Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Object	tive Question			
I	1	Let $u(x,y)$ be a solution of Laplace's equation on $x^2 + y^2 \le 1$, If	4.0	1.00
		$u(\cos\theta,\sin\theta) = \begin{cases} \sin\theta & \text{for } 0 \le \theta \le \pi \\ 0 & \text{for } \pi \le \theta \le 2\pi \end{cases} \text{ then } \text{u(0,0) equals}$		
		$\begin{array}{c} \text{A1} \\ \text{:} \end{array}$		
		A2 2/π		
		A3 : 1/(2π)		
		A4 (A)π/2		
hiect	tive Question			
2	2	For the n-th Legendre polynomial $C_n \frac{d^n y}{dx^n} (x^2 - 1)^n$ the value of c_n is	4.0	1.00
		$ \begin{array}{ccc} A1 & \underline{1} \\ \vdots & \underline{n!2^n} \end{array} $		
		$\begin{array}{ccc} A2 & n! \\ \vdots & \overline{2^n} \end{array}$		
		$n! 2^n$		
		$^{\mathrm{A4}}_{:}$ $2^{n}n!$		
VI.	tive Question			
3	3	Assume that 45 percent of the population favors a certain candidate in an election. If a random sample of size 200 is chosen, then the standard deviation of the number of members of the sample sample that favors the candidate is	4.0	1.00
		A1 : 6.12		
		A2 5.26		
		A3 _{8.18} :		
		A4 7.04 :		

Let the matter obtained in the half yearly and final examinations in a large class have an proposed control of the second of the following parameters Marke (daily rearry) 20 18	Objectiv	ve Question			
Marke (final eca) 5 20 275 These estimate the average final examination score of students who were above average on the half yearly examination is Al 72 Al 70 Al 60			approximately bivariate normal distribution with the following parameters mean Deviation Marks (half yearly) 60 18	4.0	1.00
A2 70 : A3 67 : A4 60 : Suppose u(x,y) satisfies Laplace's equation $\nabla^2 u = 0$ in \mathbb{R}^2 and $u = x$ on the unit circle. Then, at the origin A1 u lends to infinity A2 u altains a finite maximum A3 u attains a finite maximum A4 u is equal to zero Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is A1 3 A2 9 A3 6 A4 4 Objective Question The digenvalues of a skew-symmetric matrix are A1 Notations A2 The digenvalues of a skew-symmetric matrix are A3 Notations			Marks (final exa) 55 20 Correlation: 0.75 Then estimate the average final examination score of students who were above average		
A3 67 A4 60 Objective Question Suppose u(x,y) satisfies Laplace's equation ∇²u = 0 in R² and u=x on the unit circle. Then, at the origin A1 u tends to infinity A2 u attains a finite minimum A3 u stuins a finite maximum A4 u is equal to zero Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is A1 3 A2 9 A3 6 A4 4 Objective Question The dispersal part of the sector space of all 3x3 real symmetric matrices is A4 4 The eigenvalues of a skew-symmetric matrix are A1 Nonation			A1 72		
Objective Question Suppose u(x,y) satisfies Laplace's equation $\nabla^2 u = 0$ in \mathbb{R}^2 and u=x on the unit circle. All u tends to infinity All u attains a finite maximum All u is equal to zero Objective Question The dimension of the vector space of all $3x3$ real symmetric matrices is All 3 All 3 All 3 All 3 All 4 Objective Question The dimension of the vector space of all $3x3$ real symmetric matrices is All 3 All 3 All 9 All 4 Objective Question The dimension of the vector space of all $3x3$ real symmetric matrices is All 3 All 9 All 4 Objective Question The eigenvalues of a skew-symmetric matrix are All Newstrian			A2 70		
Objective Question Suppose $u(x,y)$ satisfies Laplace's equation $\nabla^2 u = 0$ in \mathbb{R}^2 and $u = x$ on the unit circle. All u tends to infinity A2 u attains a finite minimum A3 u attains a finite maximum A4 u is equal to zero Objective Question The dimension of the vector space of all $3x3$ real symmetric matrices is A1 u A2 u Objective Question A1 u A3 u A4 u Objective Question The dimension of the vector space of all u A3 u A4 u Objective Question The dimension of the vector space of all u A3 u A4 u Objective Question The dimension of the vector space of all u A3 u A4 u Objective Question The eigenvalues of a skew-symmetric matrix are A1 u Naturation			A3 67		
Suppose u(x,y) satisfies Laplace's equation $\nabla^2 u = 0$ in \mathbb{R}^2 and u=x on the unit circle. All u tends to infinity: All u tends to infinity: All u attains a finite minimum: All u is equal to zero: Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is All 3: All 3: All 9: All 6: All 4: Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is All 3: All 9: All All 1 Transition The eigenvalues of a skew-symmetric matrix are All Naturation			A4 : 60		
Suppose u(x, y) satisfies Laplace's equation $\nabla^2 u = 0$ in \mathbb{R}^2 and $u = x$ on the unit circle. Then, at the origin Al u tends to infinity A ² u attains a finite minimum A ³ u attains a finite maximum A ⁴ u is equal to zero Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is Al 3 Al 3 Al 9 Al 6 Al 4 Cobjective Question The eigenvalues of a skew-symmetric matrix are Al Namation Al Namation					
A3 u attains a finite milimum A3 u attains a finite maximum A4 u is equal to zero Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is A1 3 A2 9 A3 6 A4 4 Objective Question The eigenvalues of a skew-symmetric matrix are A1 Negorities A3 Negorities A4 Negorities	5 5	5	Suppose $u(x,y)$ satisfies Laplace's equation $\nabla^2 u = 0$ in \mathbb{R}^2 and $u=x$ on the unit circle. Then, at the origin	4.0	1.00
A3 u attains a finite maximum: A4 u is equal to zero Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is A1 3 A2 9 A3 6 A4 4 Objective Question The cigenvalues of a skew-symmetric matrix are A1 Narrotive 4.0 1.00			A1 : u tends to infinity		
A4 u is equal to zero Objective Question The dimension of the vector space of all 3x3 real symmetric matrices is A1 3 A2 9 A3 6 A4 4 Objective Question The eigenvalues of a skew-symmetric matrix are A1 Nanotive			A2 u attains a finite miimum :		
Objective Question			A3 u attains a finite maximum :		
The dimension of the vector space of all 3x3 real symmetric matrices is 4.0 1.00			A4 : u is equal to zero		
A2 9 : A3 6 : A4 4 : Objective Question 7 7 The eigenvalues of a skew-symmetric matrix are A1 Negotive				4.0	1.00
Objective Question The eigenvalues of a skew-symmetric matrix are A1 Negotive			A1 3 :		
Objective Question 7 7 The eigenvalues of a skew-symmetric matrix are 4.0 1.00 1.00			A2 ₉ :		
Objective Question 7 7 The eigenvalues of a skew-symmetric matrix are A1 Negative			A3 6		
7 The eigenvalues of a skew-symmetric matrix are A1 Negative			A4 ₄		
Al Nagative	Objectiv	ve Question			
A1 Negative :				4.0	1.00
			Negative:		

A2 3 A3 4 A4 2 The number of elements of order 5 in the symmetric group S5 is A1 5 A2 20 A3 24 A4 12 Dejective Question For the function f(z)=sin(1/z), z=0 A1 Removable singularity A2 Simple pole A3 Branch point A4 Essential singularity A4 Essential singularity			A2 Real:		
Disjective Question Tat G he a cyclic group of order 6. Then the number of elements g r G such that G is A2 3 A3 4 A4 2 The number of elements of order 5 in the symmetric group S _c is A1 5 A2 20 A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A1 5 A2 20 A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A3 10 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A3 15 A4 2 20 A3 24 A4 12 Disjective Question The number of elements of order 5 in the symmetric group S _c is A4 10 Disjective Question The number of elements of order 5 in the symmetric group S _c is A4 10 Disjective Question The number of elements of order 5 in the symmetric group S _c is A4 10 Disjective Question The number of elements of order 5 in the symmetric group S _c is A4 10 Disjective Question The number of elements g r G such that G is a constant			A3 Purely imaginary or zero :		
Let G be a cyclic group of order 6. Then the number of elements g ∈ G such that G is A			A4 of absolute value 1 :		
Let G be a cyclic group of order 6. Then the number of elements g x G such that G is A	Object	tive Question			
A2 3 A3 4 A4 2 A4 2 A4 2 A5 A5 A5 A5 A5 A5 A5			Let G be a cyclic group of order 6. Then the number of elements $g \in G$ such that G = is	4.0	1.00
A3 4 A4 2 May be a second of the symmetric group S2 is Second of			A1 5 :		
A4 2 2 2 3 4 5 4 6 5 6 7 6 6 7 6 7 6 7 7			A2 3 :		
Descrive Question			A3 ₄ :		
The number of elements of order 5 in the symmetric group S ₅ is			A4 2 :		
The number of elements of order 5 in the symmetric group S_5 is A1 5 A2 20 A3 24 A4 12 Provided For the function $f(z) = \sin(1/z)$, $z = 0$ A1 Removable singularity A2 Simple pole A3 Branch point A4 Essential singularity 1 11 A uniformly continuous function is 4.0 1.00	Object	tive Question			
A2 20			The number of elements of order 5 in the symmetric group S ₅ is	4.0	1.00
A3 24			A1 5 :		
Dispective Question A4 12			A2 20 :		
Objective Question To the function f(z)=sin(1/z), z=0 A1 Removable singularity A2 Simple pole A3 Branch point A4 Essential singularity 1 11 A uniformly continuous function is 4.0 1.00			A3 ₂₄ :		
For the function $f(z)=\sin(1/z)$, $z=0$ A1 Removable singularity A2 Simple pole A3 Branch point A4 Essential singularity 1 11 A uniformly continuous function is 4.0 1.00			A4 12 :		
A1 Removable singularity A2 Simple pole A3 Branch point A4 Essential singularity Dijective Question 1 11 A uniformly continuous function is 4.0 1.00	Object	tive Question			
A2 Simple pole A3 Branch point A4 Essential singularity Disjective Question 1 11 A uniformly continuous function is 4.0 1.00	10	10	For the function $f(z)=\sin(1/z)$, $z=0$	4.0	1.00
A3 Branch point A4 Essential singularity Dejective Question 1 11 A uniformly continuous function is 4.0 1.00			Al Removable singularity		
A4 Essential singularity Disjective Question 1 11 A uniformly continuous function is 4.0 1.00			A2 Simple pole		
Disjective Question 1 11			A3 Branch point		
1 11 A uniformly continuous function is 4.0 1.00			A4 Essential singularity		
A1 Measurable	11	11	A uniformly continuous function is	4.0	1.00
			A1 Measurable		

		 :		
		A2 Not measurable		
		A3 Integrable and simple		
		A4 Measurable and simple :		
hiaa	tive Question			
2	12	For $0 < \theta < \pi$, the matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	4.0	1.00
		A1 Has no real eigenvalues		
		A2 Is orthogonal :		
		A3 Is symmetric:		
		A4 Is skew symmetric		
	tive Question			
3	13	Let $X = \begin{bmatrix} 2 & 0 & -3 \\ 3 & -1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$. A matrix P such that P-1XP is a diagonal matrix is	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \end{array} $		
		$ \begin{array}{c} A2 \\ \vdots \\ \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} $		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$ \begin{array}{c} A4 \\ : & \begin{bmatrix} -1 & -1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix} $		
bjec 4	tive Question	Given the function $f(x) = x^2 e^{-2x}$, $x > 0$. Then $f(x)$ has the maximum value equal to	4.0	1.00

		A2 e ⁻¹		
		A3 1		
		$^{\mathrm{A4}}_{:}(2e)^{-1}$		
	tive Question			
15	15	Which of the following matrices is NOT diagonalizable?	4.0	1.00
		$\begin{bmatrix} A1 & 1 \\ 1 & 2 \end{bmatrix}$		
		$ \begin{array}{c c} A2 & \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} $		
		$\begin{bmatrix} A3 & \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{bmatrix}$		
		$\begin{bmatrix} A4 & \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$		
Object	tive Question			
16	16	Let M be a skew symmetric, orthogonal real matrix. The only possible eigenvalues are	4.0	1.00
		A1 -1,1		
		A2 -i, i		
		A3 0,1		
		A4 ₁ , i :		
	tive Question		4.0	1.00
17	17	$\int_0^\pi \int_x^\pi \int_0^2 \frac{\sin y}{y} dz dy dx $ is	4.0	1.00
		A1 -2		
		A2 ₂		
		A3 _4 :		
		A4 ₄ :		
Object	tive Question			

18	18	In a skew symmetric matrix the diagonal elements are	4.0	1.00
		A1 1 :		
		A2 0		
		A3 Different from each other:		
		A4 <i>i</i> :		
Obiect	tive Question			
19	19	If two vectors in an inner product space are orthogonal and contains unit vectors it is called	4.0	1.00
		A1 Orthonormal system		
		A2 Commutative system		
		A3 Linear system :		
		A4 Conjugate system		
Object	tive Question			
	20	Let M be a square matrix of order 2 such that rank of M is 1. Then M is	4.0	1.00
		A1 Diagonalizable and nonsingular		
		A2 Diagonalizable and nilpotent		
		A3 Neither diagonalizable nor nilpotent:		
		A4 Either diagonalizable or nilpotent but not both		
Object	tive Question			
	21	Which one of the alkali metal ions in aqueous solution has maximum ionic mobility?	4.0	1.00
		A1 K ⁺		
		$\stackrel{A2}{:}$ Rb ⁺		
		A3 : Li ⁺		
		A4 Na ⁺		

Objec	ctive Question			
22	22	The shape of XeOF ₄ is	4.0	1.00
		A1 Octahedral		
		A2 Pyramidal		
		A3 Square pyramidal		
		A4 Tetrahedral :		
	ctive Question			
23	23	According to Joule-Thomson expansion	4.0	1.00
		A1 dS=0		
		A2 dH=0		
		A3 dE=0		
		$\stackrel{A4}{:}$ dG=0		
Ohiec	ctive Question			
24	24	Identify the species with atom in +6 oxidation state for the following	4.0	1.00
		A1 MnO ₄ ⁻ :		
		A2 Cr(CN) ₆ ³ -		
		A3 CrO ₂ Cl ₂		
		A4 NiF ₆ ² -		
Ohios	ctive Question			
Објес 25	25	Germanium is an example of a/an	4.0	1.00
		A1 n-type semiconductor		
		A2 p-type semiconductor		
		A3 intrinsic semiconductor		

	A4 None of these		
Objective Questic	on		
26 26	Which of the following oxides is amphoteric in character?	4.0	1.00
	A1 CaO		
	A ² CO ₂		
	A3 SiO ₂		
	A4 SnO ₂		
Objective Questic	on		
27 27	Radioactive isotopes that have an excessive neutron-proton ratio generally exhibit which one of the following	4.0	1.00
	Al Alpha emission		
	A2 Beta emission		
	A3 Positron capture		
	A4 k-capture		
Objective Questic	on		
28 28	What is the multiplicity expected in the proton NMR spectrum for the hydrogen atoms marked by a "star" in the following compound?	4.0	1.00
	CH ₃ - C- CH ₂ - CH ₃		
	A1 Quartet :		
	A2 Triplet		
	A3 Doublet :		
	A4 Singlet		
Objective Questic			
29 29	Which of the following compound has one chiral carbon atom?	4.0	1.00
	A1 D-exythrose		

	A2 D-threose :		
	A3 Glyceraldehyde		
	A4 All of these		
Objective Question	un		
30 30	HBr reacts with CH ₂ =CH – OCH3 under anhydrous conditions at room temperature to give	4.0	1.00
	A1 CH ₃ CHO and CH ₃ Br		
	$^{ m A2}$ BrCH $_2$ CHO and CH $_3$ OH :		
	$\begin{array}{c} \text{A3} \\ \text{BrCH}_2 - \text{CH}_2 - \text{OCH}_3 \\ \end{array}$		
	$^{\mathrm{A4}}_{\mathrm{:}}$ $_{\mathrm{H_{3}C}}$ - $_{\mathrm{CHBr}}$ - $_{\mathrm{OCH_{3}}}$		
Objective Question	n		
31 31	Increased concentration of CO ₂ in atmosphere is responsible for	4.0	1.00
	A1 Nutrification		
	A2 Lack of photosynthesis		
	A3 Greenhouse effect		
	A4 Death of aquatic life		
Objective Question	n		
32 32	Which of the following is a photochemical pollutant?	4.0	1.00
	A1 Aldehyde		
	A2 Ketone		
	A3 Peroxyacetylnitrate		
	A4 All of these		
Objective Questio			
33 33	The zero point energy of an electron is equal to?	4.0	1.00

		$h^2/2 \text{ ma}^2$		
		$\begin{array}{c} A2 \\ \vdots \\ h^2/4ma^2 \end{array}$		
		A3 h ² /8ma ²		
		$^{A4}_{:}$ $h^2/16ma^2$		
Objec	tive Question			
34	34	Symmetry operations of the four C ² axes perpendicular to the principal axis belong to the same class in the point group(s)	4.0	1.00
		A1 D ₄		
		A2 D _{4d}		
		A3 _{D4h}		
		$^{ m A4}$ $_{ m D_{4h}and}$ $_{ m D_{4d}}$		
	tive Question			
35	35	Fe ₃ O ₄ and Co ₃ O ₄ are metal oxides having spinel structure. Consider their CFSEs, the correct statement regarding their structure is	4.0	1.00
		A1 Both have normal spinel structure		
		A2 Both have inverse spinel structure		
		$^{ m A3}$ $_{ m Fe_3O_4}$ has normal and $_{ m Co_3O_4}$ has inverse spinel structure :		
		A4 $\rm Fe_3O_4$ has inverse and $\rm Co_3O_4$ has normal spinel structure :		
Objec	tive Question			
86	36	The compound which obeys 18-electron rule is	4.0	1.00
		A1 Mn(CO) ₃		
		A2 Fe(CO) ₄		
		A3 _{V(CO)6}		

37 37	¹ H NMR spectrum of [18]-annulene shows	4.0	1.00
	A1 Only one peak at d 7.2 (18H)		
	A2 Only one peak at d 5.0 (18H)		
	A3 Two peaks at d 9.0 (12H) and d -3.0 (6H)		
	A4 Two peaks at d 9.0 (9H) and d -3.0 (12H)		
21: 4: 0 4:			
Objective Question 38 38		4.0	1.00
	A1 Magnets		
	A2 Magnetic lens		
	A3 Magneto meters		
	A4 Magnetic storage devices		
Objective Question			
39 39	Which of the following are peritectic systems	4.0	1.00
	A1 Pt-Ag		
	A2 Ni-Re		
	A2 Ni-Re : A3 Ni-Re, Fe-Ge, Sn-Sb		
Objective Questio	A3 Ni-Re, Fe-Ge, Sn-Sb A4 Pt-Ag, Ni-Re, Fe-Ge, Sn-Sb :		
Objective Question 40 40	A3 Ni-Re, Fe-Ge, Sn-Sb A4 Pt-Ag, Ni-Re, Fe-Ge, Sn-Sb :	4.0	1.00
	A3 Ni-Re, Fe-Ge, Sn-Sb A4 Pt-Ag, Ni-Re, Fe-Ge, Sn-Sb When a conductance cell was filled with a 0.02 M KCl, which has a specific conductance of 2.8*10 ⁻³ S mol ⁻¹ , its resistance	4.0	1.00
	A3 Ni-Re, Fe-Ge, Sn-Sb A4 Pt-Ag, Ni-Re, Fe-Ge, Sn-Sb When a conductance cell was filled with a 0.02 M KCl, which has a specific conductance of 2.8*10 ⁻³ S mol ⁻¹ , its resistance was 82.40 S at 25 °C. The cell constant is	4.0	1.00
	A3 Ni-Re, Fe-Ge, Sn-Sb A4 Pt-Ag, Ni-Re, Fe-Ge, Sn-Sb When a conductance cell was filled with a 0.02 M KCl, which has a specific conductance of 2.8*10 ⁻³ S mol ⁻¹ , its resistance was 82.40 S at 25 °C. The cell constant is A1 2.307 cm ⁻¹	4.0	1.00

	ective Question			
Эвјес 41	41	A vector field which can be expressed as negative gradient of a scalar field is called	4.0	1.00
		Al Lamellar field		
		A2 Non-Lamellar field		
		A3 Non-conservative field		
		A4 Conservative filed		
		: Conservative med		
	ective Question			
42	42	A vector is solenoidal if	4.0	1.00
		Δ1		
		A1 Gradient is zero		
		42		
		A2 Divergence is non-zero		
		A3 Gradient is non-zero		
		A4 Divergence is zero		
~1.:2/	· Otion			
Objec 43	ective Question 43	Icase —sinel	4.0	1.00
		The eigenvalue of the matrix $A = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$ is		
		A1 : e ^{±iΘ}		
		$\begin{array}{ccc} A2 \\ \vdots & e^{\pm 2i\Theta} \end{array}$		
		A3 : e ^{±3;θ}		
		A4 none of these		
Objec 44	ective Question		4.0	1.00
		The independent solution of the equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ is		
		$^{\rm A1}_{\rm \cdot}$ e ^{2x} and e ^{-x}		
		e^{2x} and e^{-x}		
		$A^2 e^{2x}$ and e^x		
		$\parallel AL = \gamma_{\rm v} + \gamma_{\rm v}$		

		$\begin{vmatrix} A3 & 1/x \text{ and } x^2 \\ \vdots \end{vmatrix}$		
		A4 Sin2x and cos x		
	ctive Question			
45	45	If a co-ordinate corresponding to a rotation is cyclic, rotation of the system about given axis remains invariant then the following quantity is conserved	4.0	1.00
		A1 Linear momentum		
		A2 Angular momentum		
		A3 Kinetic Energy		
		A4 Potential energy:		
Objec	ctive Question			
46	46	On the annihilation of a particle and its anti-particle, the energy released is E, then mass of each particle is	4.0	1.00
		$ \stackrel{A1}{:} E/c^{2x} $		
		A2 E/(2c)		
		$\stackrel{A3}{:} E/(2c^2)$		
		A4 E/c		
Ohiec	ctive Question			
06јес 47	47	Possible longitudinal normal modes of the linear symmetric triatomic molecule are	4.0	1.00
		Al Two		
		A2 Three		
		A3 Four :		
		A4 None of these		
21::-	· Or estima			
Objec 48	ctive Question 48	The electric intensity at a point varies as r ⁻¹ for	4.0	1.00
		Al Point charge		

	A2 Spherically symmetric charge distribution :		
	A3 : A plane infinite sheet		
	A4 A line charge of infinite length:		
Objectiv	Question		
49 49		4.0	1.00
	A2 π		
	A3 π/2		
	$ \begin{array}{c} A4 \\ \vdots \\ A4 \end{array} $		
Objective 50 50	Question A free electron is placed in the path of a plane electromagnetic wave . The electron will start moving	4.0	1.00
	A free electron is placed in the path of a plane electromagnetic wave. The electron will start moving All Along the electric field:	7.0	1.00
	A2 Along the magnetic field		
	A3 Along the direction of propagation of the wave		
	A4 In the plane containing the magnetic field and the direction of propagation		
Objective 51 51	Question	4.0	1.00
)1	Nusselt number is A1 Dimensionless pressure drop for internal flow through ducts	4.0	1.00
	A2 Ratio of buoyant to inertia forces		
	A3 Ratio of convection heat transfer to conduction:		
	A4 Signifies the velocity gradient at the surface		
	Question		
52 52	The minimum heat transfer area for a given situation is	4.0	1.00
	A1 Parallel flow		

		A2 Counter flow:		
		A3 Cross flow		
		A4 Shell and tube		
Objec	tive Question			
i3	53	The kVAr rating required for improving the power factor of a load operating at 627 kW and 0.72 power factor to 0.95 is	4.0	1.00
		A1 398		
		A2 144 :		
		A3 428		
		A4 660 :		
Objec	tive Question			
4	54	Materials which lack permanent magnetic dipoles are known as	4.0	1.00
		Al Paramagnetic		
		A2 Diamagnetic		
		A3 Ferromagnetic:		
		A4 Ferrimagnetic		
)hiaa	tive Question			
55	55	Ratio of inertial force to surface tension is known as	4.0	1.00
		A1 Match number		
		A2 Froude number		
		A3 Reynold's number		
		A4 Weber's number		

56	56	One ton of refrigeration is equal to the refrigeration effect corresponding to melting of 100 kg of ice	4.0	1.00
		A1 in 1 hour		
		A2 in 1 minute		
		A3 in 24 hours		
		A4 in 12 hours		
Objec	tive Question			
57	57	In vapour compression cycle, the condition of refrigerant is saturated liquid	4.0	1.00
		A1 After passing through the condenser		
		A2 Before passing through the condenser:		
		A3 : Before entering the expansion valve		
		A4 Before entering the compressor :		
Objec	tive Question			
58	58	The maximum demand of a consumer is 2 kW and the corresponding daily energy consumption is 30 units. What is the corresponding load factor?	4.0	1.00
		A1 25%		
		A2 50%		
		A3 62.5%		
		A4 75%		
Ohiec	tive Question			
59	59	As viscosity of fluid increases the boundary layer thickness will	4.0	1.00
		A1 Increase		
		A2 Decrease		
		A3 Will increase at medium values and then decrease:		

Objec	tive Question			
50	60	If the distribution voltage is raised form 11 kV to 33 kV, the line power loss would be lower by a factor	4.0	1.00
		A1 1/3		
		A2 1/9		
		A3 3		
		A4 9 :		
	tive Question			
61	61	In a given fin configuration increase in conductivity will	4.0	1.00
		A1 Decrease the total heat flow		
		A2 Will affect only the temperature gradient		
		A3 Increase the heat flow:		
		A4 Heat flow is influenced only by the base temperature and sectional area :		
Objec	tive Question			
62	62	The starting current of an induction motor is 5 times the full-load current while the full load slip is 4%. What is the ratio of starting torque to full-load torque?	4.0	1.00
		A1 0.6		
		A2 0.8		
		A3 1.0		
		A4 9:		
Ohioo	tive Question			
63	63	The refrigerating efficiency, that is, the ratio of actual COP to reversible COP of a refrigeration cycle is 0.8, the condenser	4.0	1.00
		and evaporator temperatures are 51,°C and -30°C respectively. If cooling capacity of the plant is 2.4 kW then what is the work requirement?		
		A1 1.00 kW		
		A2 1.33 kW		

		A3 1.25 kW :		
		A4 2.08 kW		
Objec	etive Question			
54	64	The power input to a 415 V, 50 Hz, 6 pole 3-phase induction motor running at 975 rpm is 40 kW. The stator losses are 1 kW and friction and windage losses are total 2 kW. What is the efficiency of the motor?	4.0	1.00
		A1 92.5%		
		A2 92%		
		A3 90% :		
		A4 88%		
Objec	tive Question			
55	65	If the enthalpy drop in the moving blades and fixed blades of a steam turbine is 10 KJ/kg and 15 KJ/kg respectively then what is the degree of reaction?	4.0	1.00
		A1 67%		
		A2 60%		
		A3 40%		
		A4 33%		
Ohioo	etive Question			
56 66	66	Fin effectiveness will be increased more by	4.0	1.00
		A1 Having higher value of convection coefficient		
		A2 Higher sectional area		
		A3 Higher thermal conductivity		
		A4 Longer circumference		
ot :	±			
Эвјес 57	etive Question	The overall heat transfer coefficient is the	4.0	1.00
		A1 Sum of resistances		

	A2 Sum of conductance		
	A3 Sum of convection coefficients:		
	A4 Resistance due to wall material		
Objective Que			
58 68	Which one dimensional number relates the thermal boundary layer and hydrodynamic boundary layer	4.0	1.00
	"""		
	A1 Rayleigh number		
	A2 Peclet number		
	A3 Grashof number:		
	A4 Prandtl number		
Objective Que	estion		
69 69	Higher COP can be achieved with	4.0	1.00
	A1 : Lower evaporator temperature and higher condenser temperature		
	A2 Higher evaporator temperature and lower condenser temperature :		
	A3 : Higher evaporator temperature and higher condenser temperature		
	A4 Lower evaporator temperature and lower condenser temperature :		
Objective Que	estion		
70 70	For heavy dust conditions, which type of fan is ideally suited?	4.0	1.00
	A1 Radial fan		
	A2 Backward inclined fan		
	A3 Forward curved fan		
	A4 Axial fans		
01: (: 0	estion		
Objective Que			

Al Oxidative, exergonic, anabolic A2 Reductive, exergonic, anabolic A3 Redox-reaction, endergonic, anabolic A4 Reductive, endergonic, anabolic A4 Reductive, endergonic, anabolic A5 Reductive, endergonic, anabolic A6 Reductive, endergonic, anabolic A7 Reductive, endergonic, anabolic A8 Reductive, endergonic, anabolic A1 Oxidative, exergonic, anabolic A4 Reductive, endergonic, anabolic A6 Reductive, exergonic, anabolic A7 Reductive, exergonic, anabolic A1 Oxidative, exergonic, anabolic A6 Reductive, exergonic, anabolic A7 Oxidative, exergonic, anabolic A6 Reductive, exergonic, anabolic A7 Oxidative, exergonic, anabolic A7 Oxidative, exergonic, anabolic A7 Oxidative, exergonic, anabolic A7 Oxidative, exergonic, anabolic A7 Reductive, exergonic, anabolic A7 Two eyeles A8 Six eyeles A8 Two eyeles			: Increases Rubisco's biding ability to CO ₂		
A4 Decreases photorespiration A4 Decreases photorespiration			A2 Carbon-assimilation takes place in mesophyll cells as four-carbon compound		
Dispective Question 72 Photosynthesis is 4.0 I.00 Al Oxidative, exergonic, anabolic Al Reductive, exergonic, anabolic Al Reductive, endergonic, anabolic Al Two cycles Al Two cycles Al Two cycles Al Two cycles Al Six cycles Al Six cycles Al Six cycles Al Ferredoxin			A3 Does not follow Calvin cycle		
Photosynthesis is			A4 Decreases photorespiration		
Photosynthesis is	Object	tive Question			
A2 Reductive, exergonic, anabolic A3 Redox-reaction, endergonic, anabolic A4 Reductive, endergonic, anabolic A1 One eyele anabolic A2 Two eyeles A3 Four cycles A4 Six cycles Dispective Question A4 Six cycles Dispective Question A5 Ferredoxin A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein			Photosynthesis is	4.0	1.00
A3 Reductive, endergonic, anabolic A4 Reductive, endergonic, catabolic Dispective Question A1 One cycle can generate one molecule of glucose A1 One cycle A2 Two cycles A3 Four cycles A4 Six cycles Dispective Question The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein					
Dejective Question 73 73 How many Calvin cycle can generate one molecule of glucose 4.0 1.00 Al One cycle A2 Two cycles A4 Six cycles A4 Six cycles A5 Four cycles A6 Four cycles A7 74 The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is 4.0 1.00 A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein A4 Iron-sulphur protein A5 A6 A6 A7 A7 A7 A8 A8 A9 A9 A9 A9 A1 A1 A2 A3 A3 A4 A4 A4 A5 A5 A6 A6 A7 A7 A7 A8 A8 A9			A2 Reductive, exergonic, anabolic		
Dejective Question Al One cycle A2 Two cycles A3 Four cycles A4 Six cycles A1 The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein A4 Iron-sulphur protein A4 Iron-sulphur protein A4 Iron-sulphur protein A5 Iron Iron			A3 Redox-reaction, endergonic, anabolic		
How many Calvin cycle can generate one molecule of glucose			A4 Reductive, endergonic, catabolic		
A1 One cycle A2 Two cycles A3 Four cycles A4 Six cycles Disjective Question 74 74 The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein					
A2 Two cycles A3 Four cycles A4 Six cycles Objective Question 74 74 The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein	73	73	How many Calvin cycle can generate one molecule of glucose	4.0	1.00
A3 Four cycles A4 Six cycles Objective Question The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein			Al One cycle		
Objective Question 74 74 The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein			A2 Two cycles		
Objective Question The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein			A3 Four cycles		
The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein			A4 Six cycles		
The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is A1 Ferredoxin A2 Quinone A3 Cytochrome A4 Iron-sulphur protein	Object	tive Question			
A2 Quinone A3 Cytochrome A4 Iron-sulphur protein			The first acceptor of electron from excited Chlorophyl molecule of photosystem-II is	4.0	1.00
A3 Cytochrome A4 Iron-sulphur protein			A1 Ferredoxin		
A4 Iron-sulphur protein			A2 Quinone		
			A3 Cytochrome		
			A4 Iron-sulphur protein		
Dijective Question					

	A1 Aerobic respiration		
	A2 Glycolysis		
	A3 Fermentation		
	A4 Photorespiration		
Objective Question			
Objective Question 76 76	Cryptochrome is the pigment that absorbs	4.0	1.00
	A1 Red light		
	A2 green light		
	A3 blue light		
	A4 yellow light		
Objective Question			
77 77	The correct equation for the reduction of nicotinamide adenine dinucleotide phosphate(NADP+) is	4.0	1.00
	A1 NADP++2H+→NADPH++ H+		
	$ \begin{array}{c} A2 \\ : \\ : \\ : \\ : \\ : \\ : \\ : \\ : \\ : \\ :$		
	$\begin{array}{c} A3 \\ : \\ NADP^++H^++2e^- \rightarrow NADPH \\ : \\ \end{array}$		
	$ \begin{array}{ccc} A4 & NADP^++2H^++2e^- \rightarrow NADPH_2 \\ \vdots & & \end{array} $		
Objective Question			
78 78	Which of the following amino acids is considered both ketogenic and glucogenic?	4.0	1.00
	A1 Aspartate:		
	A2 Alanine		
	A3 Proline		
	A4 Tyrosine		

79 79	Which of the following condition is true about food chain?	4.0	1.00
	A1 Provide more energy for next trophic level		
	A2 Provides food for succeeding organisms		
	A3 Consume energy from next trophic level		
	A4 Do not pass energy to next trophic level		
Objective Question 80 80		4.0	1.00
00	What is the fundamental difference between matter and energy?	4.0	1.00
	A1 : Matter is cycled through ecosystem;energy is not		
	A2 Energy is cycled through ecosystems;matter is not		
	A3 Energy can be converted into matter;matter cannot be converted into energy:		
	A4 Matter can be converted into energy ;energy cannot be converted into matter :		
Objective Question 81 81		4.0	1.00
01	The photochemical reaction occurs in	4.0	1.00
	A1 The plasma membrane of green plants		
	A2 The membrane of lysosomes		
	A3 : The outer membrane of chloroplasts		
	A4 The tylakoid membrane		
Objective Question 82 82		4.0	1.00
02	The reactions of the Krebs cycle	4.0	1.00
	A1 Take place in the cytosol of eukaryotic cells		
	A2 Generate ATP directly by substrate phosphorylation		
	A3 Are important for the metabolism of carbohydrates but not other molecules		

		II :		
	ve Question			
83	83	DDT has been banned as a pesticide worldwide because of its	4.0	1.00
		A1		
		Al High toxicity of mammals		
		A2		
		A2 High degree of persistent in the environment:		
		A3		
		A3 Low toxicity to insects		
		A4		
		A4 High solubility in water .		
Objectiv	ve Question			
	84	Nutrients and fertilizers can be washed into rivers/water bodies by the rain. This can cause	4.0	1.00
		A1		
		A1 Bioaccumulation		
		A2 Eutrophication		
		Eutrophication :		
		A3 Biodecradation		
		A3 Biodegradation		
		A4 a		
		A4 Spontaneous combustion		
Objectiv	ve Question			
	85	Vermicomposting is the result	4.0	1.00
		Al Forthware		
		Al Earthworms		
		Δ2		
		Actinomycetes:		
		A3		
		A3 Both (a) and (b)		
		A4 xx sq		
		A4 None of these		
Obiectiv	ve Question			
	86	Which method can be employed for disposal of human anatomical and animal wastes?	4.0	1.00
		A1		
		A1 Secure Landfills		
		A2		
		A2 Disinfection and landfills		
		A3		
		A3 Incineration		

		A4 None of these:		
Objec	ective Question			
37	87	Biodiesel is produced from oils or fats using	4.0	1.00
		A1 Fermentation		
		A2 Transesterification		
		A3 Distillation		
		A4 None of these		
Objec	ective Question			
88	88	In fluid mosaic model of plasma membrane	4.0	1.00
		A1 Upper layer is non polar and hydrophilic:		
		A2 Polar layer is hydrophobic		
		A3 Phospholipid from bimolecular layer in middle part		
		A4 Proteins form middle layer		
Objec	ective Question			
89	89	Select the correct matched pair from the following	4.0	1.00
		A1 Smooth ER – synthesis of lipids		
		A2 Rough ER - synthesis of glycogen		
		A3 Rough ER – Oxidation of fatty acids		
		A4 Sooth ER – Oxidation of phospholipids		
Objec	ective Question			
90	90	A major functional difference between the succinyl CoA-synthetase of plant and animal cell mitochondria is that it	4.0	1.00
		A1 Does not produce ATP in plant cell.		
		A2 Does not produce GTP in plant cell.		

		A3 Produces ATP in plants and GTP in animals.		
		A4 Produces GTP in plants and ATP in animals.		
Object	tive Question			
	91	Blot clot is mainly due to	4.0	1.00
		A1 Fibrin + Corpuscles		
		A2 Haparin + Corpuscles		
		A3 Plasma + Thrombocytes		
		A4 Plasma + RBC		
Obiect	tive Question			
	92	Intracellular junctions which helps in exchange of substance is	4.0	1.00
		A1 Tight junction		
		A2 Gap junction		
		A3 Interdigitation		
		A4 Desmosomes		
Obiect	tive Question			
	93	Plasma membrane of a cell is	4.0	1.00
		A1 Permeable		
		A2 Selectively permeable		
		A3 Semi-permeable		
		A4 Impermeable :		
	tive Question			
94	94	Mitochondrial DNA is	4.0	1.00
		A1 Naked		
		A2 Circular		

	A3 Double stranded:		
	A4 None of these		
Objective Question			
95	Aerobic respiration is performed by	4.0	1.00
	Al Mitochondria		
	A2 Chloroplast		
	A3 Ribosomes		
	A4 Golgi body		
Objective Question			
96	Which of the statement regarding mitochondrial membrane is not correct?	4.0	1.00
	A1 The outer membrane resembles a sieve		
	A2 The outer membrane is permeable to all kinds of molecule		
	A3 The enzyme of electron transfer chain is embedded in outer membrane		
	A4 The inner membrane is highly convoluted and has infoldings.		
Objective Question			
97 97	Nitrifying bacteria	4.0	1.00
	A1 Oxidise ammonia to nitrate		
	A2 Convert free nitrogen to nitrogen compound:		
	A3 Covert protein to ammonia		
	A4 Reduce nitrate to free nitrogen		
Dispective Question	A4 Reduce nitrate to free nitrogen		
Objective Question 8 98	A4 Reduce nitrate to free nitrogen Conversion of pyruvic acid into ethyl alcohol is mediated by	4.0	1.00

		A2 Dehydrogenase :						
		A3 Decarboxylase and dehydrogenase						
		A4 Catalase :						
Objec	tive Question							
99	99	Respiration occurs in	4.0	1.00				
		All living cells both in light and dark						
		A2 Non green cells only in light						
		A3 Non green cells both in light and dark						
		A4 All living cells in light only						
Objective Question								
100	100	Energy releasing process in which substrate is oxidised without an external electron acceptor is known as	4.0	1.00				
		Al Aerobic respiration						
		A2 Glycolysis:						
		A3 Fermentation						
		A4 Photorespiration:						